Nylon 12 GF Powder

Pour des pièces rigides, stables et fonctionnelles

Un matériau SLS haute performance pour la production en interne de pièces nécessitant une rigidité, une précision dimensionnelle et une stabilité thermique élevées.

Spécifiquement développé pour être utilisé sur la Fuse 1.

Fixations soumises à une charge soutenue à long terme

Composants structurels rigides

Prototypes fonctionnels pour produits composites

Boîtiers soumis à des contraintes thermiques

Pièces industrielles d'utilisation finale

FLP12B01

	MÉTRIQUE 1, 2	IMPÉRIAL 1,2	MÉTHODE
Propriétés mécaniques			
Résistance à la rupture par traction	38 MPa	5510 psi	ASTM D 638-14 Type 1
Module de traction	2800 MPa	406 ksi	ASTM D 638-14 Type 1
Allongement à la rupture (X/Y)	4 %	4 %	ASTM D 638-14 Type
Allongement à la rupture (Z)	3 %	3 %	ASTM D 638-14 Type
Propriétés en flexion			
Résistance à la flexion	56 MPa	8122 psi	ASTM D 790-15
Module de flexion	2400 MPa	348 ksi	ASTM D 790-15
Propriétés de résistance aux chocs			
Résistance au choc Izod	36 J/m	0,67 ft-lb/in	ASTM D256-10
Propriétés thermiques			
Température de fléchissement sous charge à 1,8 MPa	113 °C	235 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	170 °C	338 °F	ASTM D 648-16
Température de ramollissement Vicat	175 °C	347 °F	ASTM D1525
Autres propriétés	,		
Taux d'humidité (poudre)	0,23 %	0,23 %	ISO 15512 Méthode D
Absorption d'eau (pièce imprimée)	0,24 %	0,24 %	ASTM D570

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,2	Huile minérale (lourde)	1,0
Acétone	0,2	Huile minérale (légère)	1,3
Eau de Javel (NaOCI ~5 %)	0,2	Eau salée (3,5 % NaCl)	0,2
Acétate de butyle	0,2	Skydrol 5	0,8
Carburant diesel	0,6	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,2
Éther monométhylique de diéthylène-glycol	0,5	Acide fort (chlorure d'hydrogène concentré)	0,8
Huile hydraulique	1,0	Éther monométhylique de tripropylène-glycol	0,8
Peroxyde d'hydrogène (à 3 %)	0,2	Eau	0,1
Isooctane (essence moteur)	0,0	Xylène	0,2
Alcool isopropylique	0,2		

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression et de la température.

2 Les pièces ont été imprimées sur la Fuse 1 avec Nylon 12 GF Powder. Les pièces ont été stabilisées à 50 % d'humidifé relative et à 23 °C pendant sept jours avant d'être testées.